Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Thammarat Aree, ${ }^{\text {a }}{ }^{*}$ Burapol
Singhana, ${ }^{\text {a }}$ Chaveng
Pakawatchai, ${ }^{\text {b }}$ Warinthorn
Chavasiri ${ }^{\text {a }}$ and Udom Kokpol ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Science, Chulalongkorn University, Phyathai Rd., Pathumwan, Bangkok 10330, Thailand, and ${ }^{\mathbf{b}}$ Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112, Thailand

Correspondence e-mail:
mam@atc.atccu.chula.ac.th

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.052$
$w R$ factor $=0.113$
Data-to-parameter ratio $=7.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

10-Hydroxy-9-methoxy-5,6,13,13a-tetra-hydro[1,3]dioxolo[4,5-g]isoquino[3,2-a]-isoquinolin-8-one

In the title compound, 8-oxotetrahydrothalifendine, $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{5}$, the dihydropyrido and pyrido moieties adopt the intermediate conformations of envelope-screw-boat and envelope-twist, respectively. The dihedral angle between the two benzene rings is $37.16(8)^{\circ}$. In the crystal structure, the molecules translated by a unit along the c axis are linked by three weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular interactions to form a molecular chain. Along the a axis, the adjacent chains related by screw symmetry are connected by a strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and a weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular interaction to form layers parallel to the $b c$ plane.

Comment

Protoberberine alkaloids found in many plants exhibit pharmacological activities (Schmeller \& Wink, 1998; Simeon et al., 1989). The crystal structures of berberine salts [chloride, bromide, iodide, sulfate, hydrogen sulfate, azide, thiocyanate (Abadi et al., 1984; Kariuki \& Jones, 1995; Man et al., 2001], jatrorrhizine (Ghosh et al., 1993), 8-cyano-8H-berberine (Man et al., 2001), isocorypalmine (Ribár et al., 1992), canadine (Sakai \& Taira, 1987) and capaurine (Shimanouchi et al., 1969) have been reported. In the present study, the structure of the title compound, (I), has been investigated.

(I)

The molecular structure of (I), with the atomic numbering scheme, is shown in Fig. 1. The dihydropyrido moiety adopts an intermediate form between envelope and screw boat conformations, with puckering parameters Q, θ and φ (Cremer \& Pople, 1975) of 0.511 (3) A, 116.1 (3) and 250.8 (3) ${ }^{\circ}$, respectively. The pyrido moiety exhibits an intermediate form between envelope and twist conformations, with the corresponding values of 0.513 (3) $\AA, 67.3$ (3) and 276.4 (3) ${ }^{\circ}$, respectively. The dioxolane ring is in an envelope form, with Q of 0.119 (2) \AA and φ of $143.4(4)^{\circ}$. The dihedral angle between the least-squares planes through the two benzene rings is $37.16(8)^{\circ}$, which is comparable to those of isocorypalmine [33.81 (5) ${ }^{\circ}$; Ribár et al., 1992] and of 8-cyano-8H-berberine [37.69 (5) ${ }^{\circ}$; Man et al., 2001]. This value is much higher than

Figure 1
The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Figure 2
Packing diagram of the title compound, viewed down the a axis. The molecular layers at the front and at the back are displayed with filled and open bonds, respectively.
those of the other above-mentioned berberine structures [range $4.24(3)-14.96(3)^{\circ}$]. The methoxy group at C9 is nearly perpendicular to the attached benzene ring, with a torsion angle $\mathrm{C} 10-\mathrm{C} 9-\mathrm{O} 19-\mathrm{C} 15$ of -86.1 (3) ${ }^{\circ}$.

In the crystal structure, the molecules translated by a unit along the c axis are linked by weak $\mathrm{C} 14-\mathrm{H} 14 B \cdots \mathrm{O} 19^{\text {iii }}$, $\mathrm{C} 14-\mathrm{H} 14 B \cdots \mathrm{O} 20^{\text {iii }}$ [symmetry code: (iii) $x, y, z-1$] and $\mathrm{C} 15-\mathrm{H} 15 \mathrm{C} \cdots \mathrm{O}_{1}{ }^{\text {iv }}$ [symmetry code: (iv) $x, y, 1+z$] interactions to form a molecular chain (Fig. 2 and Table 2). Along the a axis, adjacent chains related by screw symmetry are connected by a strong $\mathrm{O} 20-\mathrm{H} 20 \cdots \mathrm{O} 18^{\mathrm{i}}$ [symmetry code: (i) $\left.-x, \frac{1}{2}+y, \frac{3}{2}-z\right]$ and a weak $\mathrm{C} 5-\mathrm{H} 5 B \cdots \mathrm{O} 16^{\mathrm{ii}}$ [symmetry code: (ii) $-x, y-\frac{1}{2}, \frac{1}{2}-z$] hydrogen bond to form layers (Fig. 2) parallel to the $b c$ plane.

Experimental

The title compound was isolated from the stems of Coscinium fenestratum. Crystals were obtained by recrystallizing the ethyl acetate/dichloromethane crude extract from a solvent mixture of dichloromethane/methanol. M.p. $481-483 \mathrm{~K}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR results confirmed that the title compound is 8 -oxotetrahydro-
thalifendine, as previously reported (Pinho et al., 1992; Gentry et al., 1998).

Crystal data
$\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{5}$
$M_{r}=339.34$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=8.0217$ (7) A
$b=13.5313$ (12) \AA
$c=14.2383$ (12) \AA
$V=1545.5(2) \AA^{3}$
$Z=4$
$D_{x}=1.458 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1481

> reflections
$\theta=2.5-20.4^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Rod, colorless
$0.16 \times 0.11 \times 0.09 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer

ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.986, T_{\text {max }}=0.991$
9913 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.113$
$S=1.12$
2104 reflections
294 parameters
All H -atom parameters refined
Table 1
Selected geometric parameters (\AA).

C2-O16	$1.375(4)$	C9-O19	$1.379(3)$
C3-O17	$1.381(3)$	C10-O20	$1.368(3)$
C6-N7	$1.459(3)$	C14-O16	$1.415(5)$
N7-C8	$1.352(3)$	C14-O17	$1.422(5)$
N7-C13A	$1.480(3)$	C15-O19	$1.436(4)$
C8-O18	$1.237(3)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O20-H20 \cdots O18	ii	$0.88(4)$	$1.84(4)$	$2.702(3)$
C5-H5B \cdots O16	$165(3)$			
C14-H14B \cdots O19	iii	$0.91(4)$	$2.72(4)$	$3.352(4)$
C14-H14B \cdots O20	$128(3)$			
C15-H15C \cdots O17 $^{\text {ii }}$	$0.88(4)$	$2.81(4)$	$3.449(4)$	$130(3)$

Symmetry codes: (i) $-x, \frac{1}{2}+y, \frac{3}{2}-z$; (ii) $-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iii) $x, y, z-1$; (iv) $x, y, 1+z$.

The Friedel pairs were merged for the refinement. The absolute configuration could not be determined, thus an arbitrary chioce of enantiomers has been made. All H atoms were located from a difference Fourier map and both positional and isotropic displacement parameters were refined, except for $\mathrm{H} 14 A$; as the $\mathrm{C} 14-\mathrm{H} 14 A$ bond was too long $(1.24 \AA)$, it was restrained to a reasonable distance of $1.09 \AA$. The ranges of $\mathrm{C}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ bond lengths are 0.88 (4)1.03 (3) and 0.88 (4) A, respectively.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SHELXTL (Bruker, 2000) and SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996) and

MOLSCRIPT (Kraulis, 1991); software used to prepare material for publication: PLATON (Spek, 1990) and SHELXL97.

This study was supported by the Ministry of University Affairs thesis grants for graduate students in public universities, and by the Natural Products Research Unit of Chulalongkorn University. The authors thank the Austrian-Thai Center (ATC) for Computer-Assisted Chemical Education and Research, Bangkok, for providing computer facilities.

References

Abadi, B. E. A., Moss, D. S. \& Palmer, R. A. (1984). J. Crystallogr. Spectrosc. Res. 14, 269-281.
Bruker (2000). SMART (Version 5.6), SAINT (Version 5.6), SADABS (Version 2.0) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Oak Ridge National Laboratory, Tennessee, USA.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Gentry, E. J., Jampani, H. B., Keshavarz-Shokri, A., Morton, M. D., Velde, D. V., Telikepalli, H. \& Mitscher, L. A. (1998). J. Nat. Prod. 61, 1187-1193.

Ghosh, R., Mukherjee, K., Roychowdhury, P. \& Klayman, D. L. (1993). Acta Cryst. C49, 1665-1667.
Kariuki, B. M. \& Jones, W. (1995). Acta Cryst. C51, 1234-1240.
Kraulis, P. J. (1991). J. Appl. Cryst. 24, 946-950.
Man, S., Potacek, M., Necas, M., Zak, Z., Dostal, J. (2001). Molecules, 6, 433441.

Pinho, P. M. M., Pinto, M. M. M., Kijjoa, A., Pharadai, K., Diaz, J. G., Herz, W. (1992). Phytochemistry. 31, 1403-1407.

Ribár, B., Radivojevic, P., Gasic, O. \& Kanyo, I. (1992). Acta Cryst. C48, 944945.

Sakai, T. \& Taira, Z. (1987). Acta Cryst. C43, 98-101.
Schmeller, T. \& Wink, M. (1998). Alkaloids: Biochemistry, Ecology, and Medicinal Applications, edited by M. F. Roberts and M. Wink, pp. 435-459. New York: Plenum Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shimanouchi, H., Sasada, Y., Ihara, M. \& Kametani, T. (1969). Acta Cryst. B25, 1310-1319.
Simeon, S., Rios J. L. \& Villar, A. (1989). Plant. Med. Phytother. 23, 202-250. Spek, A. L. (1990). Acta Cryst. A46, C-34.

